
Token
Exchange
Keycloak's Secret Weapon for Platforms
Keycloak Dev Day 2025

Darmstadt, 06.03.2025

About me

sven-torben.janus@conciso.de

@sventorben

Sven-Torben
Janus

Partner,
Principal Architect

What is APIxion?

 API Management
Providing Secure Access to internal and external APIs

•
Infrastructure as a Service
Enabling teams to provision and manage cloud-native
resources.

• CI/CD Automation
Streamlining deployment workflows for microservices and
applications.

APIxion’s Authentication Challenges

Microservices misused
frontend user tokens

instead of having their own
authentication

 over-permissioned
tokens

API keys were hardcoded
into services

for external integrations

 no clear delegation
model

No clear access control

between internal services
and across planes

 increased the attack
surface

APIxion’s Major Goals

Internal service-to-
service authentication

without misusing user
tokens

Secure external API
access

without hardcoded
credentials

Fine-grained permission
control

with audience-restricted
tokens

Where OAuth Falls Short
(Delegation)

Using Client Credentials
Grant (Service Account)

This issues a token for the
backend service but doesn’t
retain the user’s identity or
permissions.

Forwarding the user's
access token

This exposes scopes that
backend services shouldn't
have access to.

Stitching together both
methods manually

This is cumbersome and
error-prone, leading to
security vulnerabilities and
poor access control.

Poor-Man’s Delegation & Why It Fails

This breaks
security principles
like least privilege
and separation of
concerns.

{
"iss": "https://.../realms/apixion",
"azp": "frontend",
"sub": "developer-123@apixion",
"aud": ["frontend","portal",

"some-service"],
"realm_access":{"roles":["user"]},
"resource_access": {
"frontend":{"roles":["user"]},
"portal":{"roles":["admin"]},
"some-service":{"roles":["viewer"]}

}
}

01
Token Exchange

Introducing Token Exchange RFC8693

User-to-Service Token
Exchange

Securely exchange a user
token for a backend

service token.

Centralized API Token
Management

Use a centrally managed
API token to call external

APIs.

Impersonation &
Delegation

Act on behalf of another
user or service, if

permitted.

Token Exchange – How It Works

02
Token Exchange in
Keycloak

Restricting Full Scope for Clients

{
"azp": "frontend",
"sub": "developer-123@apixion",
"aud": ["frontend"],
"realm_access":{"roles":["user"]},
"resource_access": {
"frontend":{"roles":["user"]},

},
"iss": "https://.../realms/apixion"

}

Configuring Token Exchange

services:
keycloak:
container_name: keycloak
hostname: keycloak
image: quay.io/keycloak/keycloak:26.1.3
environment:

KC_BOOTSTRAP_ADMIN_USERNAME: admin
KC_BOOTSTRAP_ADMIN_PASSWORD: admin
KC_FEATURES: token-exchange,fine-grained-authz

command: ['start-dev']
ports:

- 8080:8080

Assigning Permissions

v

Assigning Permissions

Assigning Permissions

Performing a Token Exchange

POST /realms/apixion/protocol/openid-connect/token
HTTP/1.1
Host: keycloak.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic BASE64(client_id:client_secret)

grant_type=urn:ietf:params:oauth:grant-type:token-exchange
&subject_token=eyJhbGciOiJIUzI1NiIsInR5cCI...
&subject_token_type=urn:ietf:params:oauth:token-type:access_token
&requested_token_type=urn:ietf:params:oauth:token-type:access_token
&audience=some-backend-service

Token Exchange Response and Token
Validation
{

"iss": "https://.../realms/apixion",
"azp": "portal",
"sub": "developer-123@apixion",
"aud": ["some-backend-service"],
"realm_access": { "roles": ["user"] },
"resource_access": {
"some-backend-service": { "roles": ["viewer"] },

}
}

03
Types of Token
Exchange

Internal-to-Internal Token Exchange

Step 2

Developer Portal exchanges
the token for a new one
meant for an Other Service.

The Frontend sends a
request with a user token to
Developer Portal.

Step 3

Developer Portal calls
Other Service with the new
token scoped for that
service.

Step 1

External-to-Internal Token Exchange

Step 2: Token Exchange

It exchanges the external
token for a Keycloak token
scoped for internal services.

Step 1: Authentication

The external service
authenticates with its own IdP,
gets an external token, and
calls an internal API Gateway.

Step 3: Service Request

It uses the new Keycloak-
issued token to call the
internal backend.

Internal-to-External Token Exchange

Step 2: Forward Token

Internal backend receives a
request from the frontend.

Step 1: Authentication

User authenticates to the
internal and external IdP
(identity provider
federation)

Step 3: Exchange Token

Backend exchanges it for a
new token and calls the
external API using the
exchanged token.

04
Platforms

Understanding
Platform Planes

Control Plane: Manages orchestration, security
policies, and infrastructure automation

Data Plane: Processes user traffic, application
workloads, and storage operations.

Management Plane: Handles API gateways, service
discovery, and centralized IAM.

Examples of Platform Planes

Data
Plane

Management
Plane

Control
PlanePlatform/Plane Type

Compute &
Storage

API Gateway,
Service Mesh

IAM, Policy
EnforcementCloud Providers

Sidecar Proxies,
API Traffic (Envoy,

Linkerd proxy)

Authentication &
Service Discovery
(Keycloak, SPIRE)

Istio Pilot,
Consul Control

Servers
Service Meshes

Tenant-Specific
Applications &

Data Stores

Identity
Federation, API
Security Policies

Tenant
Management,

Admin APIs
Enterprise SaaS

Planes, Trust Relationships, and
Token Exchange

Token Exchange ScenarioExample Use CaseTrust Relationship

A Tenant Management Service
exchanges its control token for a
management token to configure
new identity providers in Keycloak.

Multi-tenant SaaS platform managing
identities across tenants.

Control Plane → Management
Plane

An API Gateway exchanges its token
for a tenant-scoped token before
calling a customer’s backend service.

API security enforcement for
customer data.

Management Plane → Data Plane

A tenant analytics dashboard
requests a read-only token to
access metadata from APIxion’s
Service Registry.

Ensuring tenant microservices cannot
escalate privileges.

Data Plane → Management Plane

Blocked by policy—Tenant
microservices are prevented from
requesting control over platform-wide
resources.

Preventing tenant services from
modifying platform configurations.

Data Plane → Control Plane

05
Observability

Audit Logs

Monitoring – Logging
2025-02-28 23:10:15,414 WARN [org.keycloak.events] (executor-thread-3)

type="TOKEN_EXCHANGE_ERROR",
realmId="c6311f0b-e87a-423c-84e2-74f2a8618b40", realmName="apixion",
clientId="frontend", userId="null", ipAddress="172.18.0.1",
error="not_allowed", reason="client not allowed to exchange to audience",
auth_method="token_exchange",
audience="backend",
grant_type="urn:ietf:params:oauth:grant-type:token-exchange",
client_auth_method="client-secret"

2025-02-28 23:10:57,757 DEBUG [org.keycloak.events] (executor-thread-15)
type="TOKEN_EXCHANGE„
realmId="c6311f0b-e87a-423c-84e2-74f2a8618b40", realmName="apixion",
clientId="frontend",
userId="2bf85a60-3488-40e8-828b-2fbd25086834",
sessionId="08e191c7-f3d4-4499-9c86-a2adf091ed03", ipAddress="172.18.0.1",
auth_method="token_exchange",
audience="backend",
...

Monitoring – Event Metrics
curl -s https://keycloak/metrics
| grep 'event="token_exchange"'

keycloak_user_events_total{
client_id="portal",
error="",
event="token_exchange",
idp="",
realm="apixion"} 15422.0

keycloak_user_events_total{
client_id="portal",
error="not_allowed",
event="token_exchange",
idp="",
realm="apixion"} 38.0

06
Takeaways

How APIxion Uses Token Exchange

Frontend User Authentication →
Internal API Access

The frontend receives a user token
but exchanges it for a backend-
scoped token before making API
calls

External API Integrations

When an internal API needs to call
an external service, it exchanges its
Keycloak-issued token for an API-
specific access token

Internal Service-to-Service
Authentication

Services use Token Exchange to
request scoped tokens instead of
forwarding user credentials.

Platform Segmentation

APIxion segregates trust between
its Control, Management, and Data
Planes, ensuring least privilege at
every level

Best Practices on Platform-Level

Monitor and Audit
Token Usage

Regularly inspect logs and
metrics for unexpected
token exchange requests
to detect misconfigurations
or security threats

Enforce Fine-Grained
Permissions

Always configure strict
Token Exchange policies
per client. Do not allow
unrestricted token
exchange.

Disable Full Scope for
Clients

Ensure clients/services only
get the minimal scopes
they need, preventing token
misuse.

Establish Clear Trust
Boundaries

If your platform has Planes,
define explicit trust
relationships and enforce
separation of concerns.

Limit Token Exchange
Availability

Not all clients should be
able to exchange tokens—
restrict it to approved
services only via Keycloak
permissions

Use Audience
Restrictions

Tokens should always have
specific target audiences
to prevent cross-service
misuse.

Final Thoughts

Why Token
Exchange is Key to
Secure Platforms

Token Exchange is critical
for modern platforms

It prevents Poor-Man’s
Delegation

It enforces trust and
separation in a platform

It strengthens
microservices, API
security, and external
integrations

Q&A – Let’s Discuss

Join Our Team

